Математика и нейросети в дизайне костюма
Автор: Минакова Анастасия Николаевна
Организация: Университет промышленных технологий и дизайна
Населенный пункт: г. Санкт-Петербург
Автор: Литвинова Эвелина Даниловна
Организация: Университет промышленных технологий и дизайна
Населенный пункт: г. Санкт-Петербург
Математика является основой всех наук, в том числе гуманитарных, поэтому так важно всем изучать и понимать этот предмет. Математика не терпит произвола. Это олицетворение строгой логики и порядка. Она помогает изучить наш мир с его законами.
Математика в мире моды. Математика и разработка одежды, казалось бы, очень далеки друг от друга. Но это ведь только на первый взгляд. Знание математики добавит вам преимущества, если вы будете знать основы, такие как средние значения, проценты, суммы и так далее. Важность того, насколько быстро и точно вы можете выполнять эти функции. Дизайн одежды — это не только искусство или что-то такое, чему кто-то мог бы научиться, потому что это интересно, но и технический курс. Математика играет важную роль в дизайне одежды, и её применение может быть как полезным, так и проблематичным. Рассмотрю основные особенности и проблемы использования математики в этой области. Особенности применения математики в дизайне одежды
1. Геометрия форм:
Дизайнеры используют геометрические фигуры для создания выкроек и моделирования одежды. Понимание форм помогает в создании симметричных и гармоничных силуэтов. (Рисунок 1)
2. Пропорции и масштабы:
Знание пропорций позволяет дизайнерам создавать гармоничные и привлекательные изделия. Использование правил золотого сечения или других пропорциональных систем может улучшить эстетические качества. (Рисунок 2).
3. Технические чертежи: (лекала)
Математика необходима для создания точных технических чертежей, которые включают размеры, углы и другие параметры, необходимые для пошива одежды. (Рисунок 3).
4. Расчет материалов:
Для оптимизации затрат на ткани и другие материалы дизайнеры используют математические расчеты для определения необходимого количества ткани с учетом выкроек.
5. Моделирование:
Компьютерные программы для 3D-моделирования одежды используют математические алгоритмы для создания виртуальных моделей, что позволяет визуализировать конечный продукт.
Проблемы применения математики в дизайне одежды
1. Сложность расчетов:
Не все дизайнеры имеют достаточно математических знаний, что может привести к ошибкам в расчетах размеров и пропорций.
2. Творческое ограничение:
Чрезмерное внимание к математическим аспектам может ограничивать творческий процесс. Некоторые дизайнеры могут чувствовать себя скованными строгими правилами
3. Изменчивость размеров:
Разные бренды могут использовать разные системы размеров, что делает математические расчеты сложными при создании универсальных моделей.
4. Необходимость адаптации:
Математические модели, используемые для создания одежды, могут не всегда соответствовать реальным условиям (например, разная плотность тканей или особенности фигуры).
5. Влияние технологии:
С развитием технологий и программного обеспечения некоторые традиционные математические навыки могут теряться, что может негативно сказаться на качестве работы.
Многие бренды обновляют коллекции не раз в сезон, как было раньше, а раз в несколько недель, так что от дизайнеров требуется огромная скорость при сохранении уникального индивидуального дизайна. Благодаря нейросетям и искусственному интеллекту, любой дизайнер может ускорить и упростить свою работу, используя и математику и творческое воображение. (Рисунок 4).
В прошедшие пару лет нейросети стали широко распространяться в дизайне. С их помощью создают впечатляющие рекламные кампании, генерируют фантазийные иллюстрации, составляют интерфейсные тексты, обрабатывают фотосеты. Нейросеть — это программа, которая умеет обучаться на основе данных и примеров. То есть она не работает по готовым, запрограммированным правилам и алгоритмам, а пишет их сама во время обучения. Никакого мышления и сознания в нейросети нет — только алгоритмы и формулы. Единственное, что отличает её от других компьютерных программ, — это способность обучаться и адаптироваться к новым задачам.
G-Star RAW, американская фирма по производству джинсовой одежды класса «люкс», представила новую коллекцию одежды, чей дизайн полностью спроектировала известная нейросеть Midjourney. (Рисунок 5).
Работа с нейросетями открывает огромные возможности для творческой деятельности, но важно помнить, что успех во многом зависит от того, как вы взаимодействуете с самой нейросетью. Существует ряд базовых правил создания промптов (заданий) для нейросетей, которые необходимо изучить для получения наилучших результатов. Вот пять ключевых правил:
1.Четкость и детализация. Чем точнее вы опишете задачу, тем более релевантным будет результат. Это особенно важно для генерации реалистичных изображений, будь то фотосессия или принт, — опишите цвет, материалы и стиль как можно подробнее.
2.Используйте готовые референсы. Важно задавать нейросети конкретные примеры или референсы, особенно если вы вдохновляетесь чем-то уже существующим. Так вы сможете точнее сформулировать задачу и получить более соответствующий вашей задумке результат.
3.Определение стиля. Если работа связана с графическим дизайном или принтами, укажите стиль, в котором нужно создать изображение.
4.Каскадные генерации. Иногда стоит разбить задачу на несколько этапов. Например, сначала сгенерировать стилистику, а затем на основе этого создать элементы принта. Это позволяет настраивать результат постепенно и точно.
5.Постоянное тестирование и настройка. Нейросети постоянно развиваются, и тестирование новых подходов и алгоритмов может значительно ускорить и улучшить процесс работы.
Нейросети не заменят дизайнеров, если дизайнер готов развиваться и может предложить клиентам действительно продуманные решения. Конечно, стоит помнить что нейросети, как и любой математический инструмент - не универсальны, не всеобщая панацея, они имеют ряд ограничений и применимы к вполне определённому классу задач. Искусственный интеллект как мощное средство повышения эффективной работы дизайнеров. Практическое значение решений задач оптимизации прямо зависит от того, насколько хороша исходная математическая модель. В сложных системах математическое моделирование является затруднительным, приблизительным, неточным. Чем сложнее система, тем осторожнее следует относиться к её оптимизации.
Полный текст статьи см. в приложении.